Stock Market Direction Prediction Using Data Mining Classification
نویسنده
چکیده
The key of success in stock trading is to buy and sell stocks at the right time for the right price. “Buy Low, Sell High” sounds easy, but it is so difficult to carry out since the direction of stock market in the near future is almost unpredictable. With the advances in data mining, it has now become possible to predict the future market direction based on historical data. In this study, different approaches are used to predict the future market direction of the Stock Exchange of Thailand (SET). Time series forecasting is conducted and a suitable span of time for the stock market data is examined. A novel approach to predict future market direction has been introduced based on chart patterns recognition by using data mining classification. Models are built through different methods including neural network, decision tree, naïve Bayes and k-nearest neighbors. Results were obtained, compared and discussed in details. Important chart patterns to support decision making in stock trading had been found out. In order to visualize the result, a visualization technique is also introduced.
منابع مشابه
Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملStock Market Prediction Using Data Mining
Data mining is well founded on the theory that the historic data holds the essential memory for predicting the future direction. This technology is designed to help investors discover hidden patterns from the historic data that have probable predictive capability in their investment decisions. The prediction of stock markets is regarded as a challenging task of financial time series prediction....
متن کاملStock Prediction and Automated Trading System
Stock market decision making is a very challenging and difficult task of financial data prediction. Prediction about stock market with high accuracy movement yield profit for investors of the stocks. Because of the complexity of stock market financial data, development of efficient models for prediction decision is very difficult, and it must be accurate. This study attempted to develop models ...
متن کاملA Genetic Algorithm Optimized Decision Tree- SVM based Stock Market Trend Prediction System
Prediction of stock market trends has been an area of great interest both to researchers attempting to uncover the information hidden in the stock market data and for those who wish to profit by trading stocks. The extremely nonlinear nature of the stock market data makes it very difficult to design a system that can predict the future direction of the stock market with sufficient accuracy. Thi...
متن کاملPrediction of Stock Market Index Movement by Ten Data Mining Techniques
Ability to predict direction of stock/index price accurately is crucial for market dealers or investors to maximize their profits. Data mining techniques have been successfully shown to generate high forecasting accuracy of stock price movement. Nowadays, in stead of a single method, traders need to use various forecasting techniques to gain multiple signals and more information about the futur...
متن کامل